Chemical bonds in collagen rupture selectively under tensile stress

Author:

Rowe JamesORCID,Röder KonstantinORCID

Abstract

Collagen fibres are the main constituent of the extracellular matrix, and fulfil an important role in the structural stability of living multicellular organisms. An open question is how collagen absorbs pulling forces, and if the applied forces are strong enough to break bonds, what mechanisms underlie this process. As experimental studies on this topic are challenging, simulations are an important tool to further our understanding of these mechanisms. Here, we present pulling simulations of collagen triple helices, revealing the molecular mechanisms induced by tensile stress. At lower forces, pulling alters the configuration of proline residues leading to an effective absorption of applied stress. When forces are strong enough to introduce bond ruptures, these are located preferentially in X-position residues. Reduced backbone flexibility, for example through mutations or cross linking, weakens tensile resistance, leading to localised ruptures around these perturbations. In fibre-like segments, a significant overrepresentation of ruptures in proline residues compared to amino acid contents is observed. This study confirms the important role of proline in the structural stability of collagen, and adds detailed insight into the molecular mechanisms underlying this observation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3