HA stability regulates H1N1 influenza virus replication and pathogenicity in mice by modulating type I interferon responses in dendritic cells

Author:

Russier MarionORCID,Yang Guohua,Briard Benoit,Meliopoulos Victoria,Cherry Sean,Kanneganti Thirumala-Devi,Schultz-Cherry Stacey,Vogel Peter,Russell Charles J.ORCID

Abstract

ABSTRACTHemagglutinin (HA) stability, or the pH at which the HA is activated to cause membrane fusion, has been associated with the replicative fitness, pathogenicity, transmissibility, and interspecies adaptation of influenza A viruses. Here, we investigated several mechanisms by which a destabilizing HA mutation, Y17H (activation pH 6.0), may attenuate virus replication and pathogenicity in DBA/2 mice, compared to wild-type (WT; activation pH 5.5). Extracellular lung pH was measured to be near neutral (pH 6.9–7.5). WT and Y17H viruses had similar environmental stability at pH 7.0; thus, extracellular inactivation was unlikely to attenuate Y17H virus. The Y17H virus had accelerated single-step replication kinetics in MDCK, A549, and Raw264.7 cells. The destabilizing mutation also increased early infectivity and type I interferon (IFN) responses in mouse bone marrow–derived dendritic cells (DCs). In contrast, the HA-Y17H mutation reduced multistep replication in murine airway mNEC and mTEC cultures and attenuated virus replication, virus spread, severity of infection, and cellular infiltration in the lungs of mice. Normalizing virus infection and weight loss in mice by inoculating them with Y17H virus at a dose 500-fold higher than that of WT virus revealed that the destabilized mutant virus triggered the upregulation of more host genes and increased type I IFN responses and cytokine expression in DBA/2 mouse lungs. Overall, HA destabilization decreased virulence in mice by boosting early infection in DCs, resulting in greater activation of antiviral responses, including type I IFN. These studies reveal HA stability may regulate pathogenicity by modulating IFN responses.ImportanceDiverse influenza A viruses circulate in wild aquatic birds, occasionally infecting farm animals. Rarely, an avian- or swine-origin influenza virus adapts to humans and starts a pandemic. Seasonal and many universal influenza vaccines target the HA surface protein, which is a key component of pandemic influenza. Understanding HA properties needed for replication and pathogenicity in mammals may guide response efforts to control influenza. Some antiviral drugs and broadly reactive influenza vaccines that target the HA protein have suffered resistance due to destabilizing HA mutations that do not compromise replicative fitness in cell culture. Here, we show that despite not compromising fitness in standard cell cultures, a destabilizing H1N1 HA stalk mutation greatly diminishes viral replication and pathogenicity in vivo by modulating type I IFN responses. This encourages targeting the HA stalk with antiviral drugs and vaccines as well as reevaluating previous candidates that were susceptible to destabilizing resistance mutations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3