Boundary conditions for early life converge to an organo-sulfur metabolism

Author:

Goldford Joshua E.ORCID,Hartman Hyman,Marsland RobertORCID,Segrè DanielORCID

Abstract

AbstractIt has been suggested that a deep memory of early life is hidden in the architecture of metabolic networks, whose reactions could have been catalyzed by small molecules or minerals prior to genetically encoded enzymes (1–6). A major challenge in unraveling these early steps is assessing the plausibility of a connected, thermodynamically consistent proto-metabolism under different geochemical conditions, which are still surrounded by high uncertainty. Here we combine network-based algorithms (9, 10) with physicochemical constraints on chemical reaction networks to systematically show how different combinations of parameters (temperature, pH, redox potential and availability of molecular precursors) could have affected the evolution of a proto-metabolism. Our analysis of possible trajectories indicates that a subset of boundary conditions converges to an organo-sulfur-based proto-metabolic network fueled by a thioester- and redox-driven variant of the reductive TCA cycle, capable of producing lipids and keto acids. Surprisingly, environmental sources of fixed nitrogen and low-potential electron donors seem not to be necessary for the earliest phases of biochemical evolution. We use one of these networks to build a steady-state dynamical metabolic model of a proto-cell, and find that different combinations of carbon sources and electron acceptors can support the continuous production of a minimal ancient “biomass” composed of putative early biopolymers and fatty acids.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences

2. Speculations on the origin and evolution of metabolism

3. Conjectures and reveries

4. de Duve, C. (1991) Blueprint for a cell: the nature and origin of life, Neil Patterson Publishers, Carolina Biological Supply Company, Burlington, N.C.

5. The origin of intermediary metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3