Abstract
AbstractPhenotypic plasticity in response to shifts in temperature, known as thermal acclimation, is an essential component of the ability of a species to cope with environmental change. Not only does this process potentially improve an individual’s thermal tolerance, it will also act simultaneously on various fitness related traits that determine whether a population increases or decreases in size. In light of global change, thermal acclimation therefore has consequences for population persistence that extend beyond simply coping with heat stress. This particularly important when we consider the additional threat of parasitism associated with global change, as the ability of a pathogen to invade a host population depends on both its capacity to proliferate within a host and spread between hosts, and thus the supply of new susceptible hosts in a population. Here, we use the host Daphnia magna and its bacterial pathogen Pasteuria ramosa to investigate how thermal acclimation may impact various aspects of host and pathogen performance at the scale of both an individual and the population. We independently test the effect of maternal thermal acclimation and direct thermal acclimation on host thermal tolerance, measured as knockdown times, as well as host fecundity and lifespan, and pathogen infection success and spore production. We find that direct thermal acclimation enhances host thermal tolerance and intrinsic rates of population growth, despite a decline observed for host fecundity and lifespan. Pathogens, on the other hand, faired consistently worse at warmer temperatures at the within-host scale, and also in their potential to invade a host population. Our results suggest that hosts could benefit more from warming than their pathogens, but highlight that considering both within- and between-host thermal performance, including thermal tolerance and fitness traits, is needed to fully appreciate how increasing thermal variability will impact host and pathogen populations.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献