High dose dietary vitamin D allocates surplus calories to muscle and growth instead of fat via modulation of myostatin and leptin signaling

Author:

Long Caela,Tara Zahra,Casella Alex,Mark Julian,Roizen Jeffrey D.ORCID

Abstract

ABSTRACTObesity is the leading proportional cause for diabetes, heart disease and cancer. Obesity occurs because the body stores surplus calories as fat. Fat cells secrete a hormone, leptin, that modulates energy balance at the brain. Changes in fat mass are mirrored by changes in serum leptin. Increases in leptin cause the brain to decrease appetite and increase energy expenditure. However in obesity, leptin sensitivity is decreased which mutes leptin mediated changes in appetite and energy expenditure. We have limited understanding of what controls leptin production by fat or how sensitive the brain is to leptin. Muscle produces a hormone, myostatin, that plays an analogous role to the role that leptin plays in fat. Absent myostatin leads to increased muscle mass and strength. We also do not know what controls myostatin production or sensitivity. Although fat mass and muscle mass are closely linked, the interplay between leptin and myostatin remains unexplored. Vitamin D improves lean mass via what are thought to be primarily trophic effects at the muscle. Here we show that high dose dietary vitamin D preferentially allocates excess calories to muscle and growth instead of storage as fat by decreasing myostatin production and increasing leptin production and sensitivity. That is, high dose vitamin D improves organismal energy sensing. Obesity, aging and other chronic inflammatory diseases are associated with decreased muscle function and mass. Our work provides a physiologic framework for how high-dose vitamin D would be effective in these pathologies to increase allocation of calories to muscle instead of fat and reveals novel interplay between the myostatin and leptin signaling whereby myostatin conveys energy needs to modulate leptin effects on calorie allocation. Furthermore, our work reveals how physiologic seasonal variation in vitamin D may be important in controlling season-specific metabolism and calorie allocation to fat in winter and muscle in summer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3