Multi-tasking Deep Network for Tinnitus Classification and Severity Prediction from Multimodal Structural Images

Author:

Lin Chieh-Te,Ghosh Sanjay,Hinkley Leighton B.,Dale Corby L.,Souza Ana,Sabes Jennifer H.,Hess Christopher P.,Adams Meredith E.,Cheung Steven W.,Nagarajan Srikantan S.

Abstract

AbstractSubjective tinnitus is an auditory phantom perceptual disorder without an objective biomarker. Fast and efficient diagnostic tools will advance clinical practice by detecting or confirming the condition, tracking change in severity, and monitoring treatment response. Motivated by evidence of subtle anatomical or functional morphological information in magnetic resonance images (MRI) of the brain, we examined data-driven machine learning methods for joint tinnitus classification (tinnitus or no tinnitus) and tinnitus severity prediction. We propose a deep multi-task multi-modal framework for joint functionalities using structural MRI (sMRI) data. To leverage cross-information multimodal neuroimaging data, we integrated two modalities of 3-dimensional sMRI - T1 weighted (T1w) and T2 weighted (T2w) images. To explore the key components in the MR images that drove task performance, we segmented both T1w and T2w images into three different components - cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM), and examined performance of each segmented image. Results demonstrate that our multimodal framework capitalizes on the information across both modalities (T1w and T2w) for the joint task of tinnitus classification and severity prediction. Our model outperforms existing learning-based and conventional methods in terms of accuracy, sensitivity, specificity, and negative predictive value.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3