Identification and expression ofLactobacillus paracaseigenes for adaptation to desiccation and rehydration

Author:

Palud Aurore,Salem Karima,Cavin Jean-François,Beney Laurent,Licandro HélèneORCID

Abstract

AbstractLactobacillus paracaseiis able to persist in a variety of natural and technological environments despite physico-chemical perturbations, in particular alternations between desiccation and rehydration. However, the way in which it adapts to hydric fluctuations and in particular the genetic determinants involved are not clearly understood. To identify the genes involved in adaptation to desiccation, an annotated library ofL. paracaseirandom transposon mutants was screened for viability after desiccation (25% relative humidity, 25°C). Subsequently, the expression of the identified genes was measured at five stages of the dehydration-rehydration process to formulate the chronology of gene expression. The 24 identified genes were related to metabolism and transport, membrane function and structure, regulation of stress response, DNA related enzymes and environmental sensing. They were classified into four different transcriptomic profiles, in particular genes upregulated during both desiccation and rehydration phases and genes upregulated during the desiccation phase only. Thus, genetic response to hydric fluctuations seems to occur during desiccation and can continue or not during rehydration. The genes identified should contribute to improving the stabilization of lactobacillus starters in dry state.ImportanceSince water is the fundamental component of all living organisms, desiccation and rehydration alternation is one of the most prevalent and severe stresses for most microorganisms. Adaptation to this stress occurs via a combination of mechanisms which depend on the genetic background of the microorganism. InL. paracasei,we developed a strategy to identify genes involved in the adaptation to hydric fluctuations using random transposon mutagenesis and targeted transcriptomics. Both dehydration and rehydration were studied to decipher the chronology of genetic mechanisms. We found 24 as yet unidentified genes involved in this response. Most of them are linked to either the transport of molecules or to cell wall structure and function. Our screening also identified genes for environment sensing and two alarmones necessary forL. paracaseisurvival. Furthermore, our results show that desiccation is a critical phase for inducing stress response inL. paracasei.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3