Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Author:

Fu YuORCID,Jung Alexander WORCID,Torne Ramon Viñas,Gonzalez SantiagoORCID,Vöhringer HaraldORCID,Shmatko Artem,Yates Lucy,Jimenez-Linan Mercedes,Moore LuizaORCID,Gerstung MoritzORCID

Abstract

The diagnosis of cancer is typically based on histopathological assessment of tissue sections, and supplemented by genetic and other molecular tests1–6. Modern computer vision algorithms have high diagnostic accuracy and potential to augment histopathology workflows7–9. Here we use deep transfer learning to quantify histopathological patterns across 17,396 hematoxylin and eosin (H&E) stained histopathology slide images from 28 cancer types and correlate these with matched genomic, transcriptomic and survival data. This approach accurately classifies cancer types and provides spatially resolved tumor and normal distinction. Automatically learned computational histopathological features correlate with a large range of recurrent genetic aberrations pan-cancer. This includes whole genome duplications, which display universal features across cancer types, individual chromosomal aneuploidies, focal amplifications and deletions as well as driver gene mutations. There are wide-spread associations between bulk gene expression levels and histopathology, which reflect tumour composition and enables localising transcriptomically defined tumour infiltrating lymphocytes. Computational histopathology augments prognosis based on histopathological subtyping and grading and highlights prognostically relevant areas such as necrosis or lymphocytic aggregates. These findings demonstrate the large potential of computer vision to characterise the molecular basis of tumour histopathology and lay out a rationale for integrating molecular and histopathological data to augment diagnostic and prognostic workflows.

Publisher

Cold Spring Harbor Laboratory

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3