Abstract
AUTHOR SUMMARYDNA lesions block cellular processes such as transcription, inducing apoptosis, tissue failures and premature ageing. To counteract the deleterious effects of DNA damage, cells are equipped with various DNA repair pathways. Transcription Coupled Repair specifically removes helix-distorting DNA adducts in a coordinated multi-step process. This process has been extensively studied, however once the repair reaction is accomplished, little is known about how transcription restarts. In this study, we show that, after UV irradiation, the CDK9/CyclinT1 kinase unit is specifically released from the HEXIM1 complex and that this released fraction is degraded in the absence of CSB. We determine that UV-irradiation induces a specific Ser2 phosphorylation of the RNA polymerase II and that this phosphorylation is CSB dependent. Surprisingly CDK9 is not responsible for this phosphorylation but instead plays a non-enzymatic role in transcription restart after DNA repair.
Publisher
Cold Spring Harbor Laboratory