Comparison of alternative models of human movement and the spread of disease

Author:

Bjørnstad Ottar N.ORCID,Grenfell Bryan T.,Viboud Cecile,King Aaron A.

Abstract

AbstractPredictive models for the spatial spread of infectious diseases has received much attention in recent years as tools for the management of infectious diseas outbreaks. Prominently, various versions of the so-called gravity model, borrowed from transportation theory, have been used. However, the original literature suggests that the model has some potential misspecifications inasmuch as it fails to capture higher-order interactions among population centers. The fields of economics, geography and network sciences holds alternative formulations for the spatial coupling within and among conurbations. These includes Stouffer’s rank model, Fotheringham’s competing destinations model and the radiation model of Simini et al. Since the spread of infectious disease reflects mobility through the filter of age-specific susceptibility and infectivity and since, moreover, disease may alter spatial behavior, it is essential to confront with epidemiological data on spread. To study their relative merit we, accordingly, fit variants of these models to the uniquely detailed dataset of prevaccination measles in the 954 cities and towns of England and Wales over the years 1944-65 and compare them using a consistent likelihood framework. We find that while the gravity model is a reasonable first approximation, both Stouffer’s rank model, an extended version of the radiation model and the Fotheringham competing destinations model provide significantly better fits, Stouffer’s model being the best. Through a new method of spatially disaggregated likelihoods we identify areas of relatively poorer fit, and show that it is indeed in densely-populated conurbations that higher order spatial interactions are most important. Our main conclusion is that it is premature to narrow in on a single class of models for predicting spatial spread of infectious disease. The supplemental materials contain all code for reproducing the results and applying the methods to other data sets.Author summaryThe ability to predict how infectious disease will spread is of great importance in the face of the numerous emergent and re-emergent pathogens that currently threatening human well-being. We identified a variety of alternative models that predict human mobility as as a function of population distribution across a landscape. These consider some models that account for pair-wise interactions between population centers, as well as some that allow for higher-order interactions. We trained the models using a uniquely rich spatiotemporal data set on pre-vaccination measles in England and wales (1944-65), which comprises more than a million records from 954 cities and towns. Likelihood rankings of the different models reveal strong evidence for higher-order interactions in the form of competition among cities as destinations for travelers and, thus, dilution of spatial transmission. The currently most commonly used so-called ‘gravity’ models were far from the best in capturing spatial disease dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transmission matrices used in epidemiologic modelling;Infectious Disease Modelling;2024-03

2. Infrastructure for spatiotemporal exploration of interregional and international interaction of epidemiological data (DEMO PAPER);Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

3. A discrete‐time survival model for porcine epidemic diarrhoea virus;Transboundary and Emerging Diseases;2022-10-29

4. Conditional propagation of chaos in a spatial stochastic epidemic model with common noise;Stochastics and Partial Differential Equations: Analysis and Computations;2022-07-27

5. A discrete-time survival model for porcine epidemic diarrhea virus;2022-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3