G-domain prediction across the diversity of G protein families

Author:

Sanghavi Hiral M.,Rashmi Richa,Dasgupta Anirban,Majumdar SharmisthaORCID

Abstract

AbstractGuanine nucleotide binding proteins are characterized by a structurally and mechanistically conserved GTP-binding domain, indispensable for binding GTP. The G domain comprises of five adjacent consensus motifs called G boxes, which are separated by amino acid spacers of different lengths. Several G proteins, discovered over time, are characterized by diverse function and sequence. This sequence diversity is also observed in the G box motifs (specifically the G5 box) as well as the inter-G box spacer length. The Spacers and Mismatch Algorithm (SMA) introduced in this study, can predict G-domains in a given G protein sequence, based on user-specified constraints for approximate G-box patterns and inter-box gaps in each G protein family. The SMA parameters can be customized as more G proteins are discovered and characterized structurally. Family-specific G box motifs including the less characterized G5 motif as well as G domain boundaries were predicted with higher precision. Overall, our analysis suggests the possible classification of G protein families based on family-specific G box sequences and lengths of inter-G box spacers.Significance StatementIt is difficult to define the boundaries of a G domain as well as predict G boxes and important GTP-binding residues of a G protein, if structural information is not available. Sequence alignment and phylogenetic methods are often unsuccessful, given the sequence diversity across G protein families. SMA is a unique method which uses approximate pattern matching as well as inter-motif separation constraints to predict the locations of G-boxes. It is able to predict all G boxes including the less characterized G5 motif which marks the carboxy-terminal boundary of a G domain. Thus, SMA can be used to predict G domain boundaries within a large multi-domain protein as long as the user-specified constraints are satisfied.ClassificationBiological Sciences/Biophysics and Computational Biology

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3