Homeostatic recovery of embryonic spinal activity initiated by compensatory changes in resting membrane potential

Author:

Gonzalez-Islas CarlosORCID,Garcia-Bereguiain Miguel Angel,Wenner PeterORCID

Abstract

AbstractWhen baseline activity in a neuronal network is modified by external challenges, a set of mechanisms is prompted to homeostatically restore activity levels. These homeostatic mechanisms are thought to be profoundly important in the maturation of the network. We have previously shown that 2-day blockade of either excitatory GABAergic or glutamatergic transmission in the living embryo transiently blocks the movements generated by spontaneous network activity (SNA) in the spinal cord. However, by 2 hours of persistent receptor blockade embryonic movements begin to recover, and by 12 hours we observe a complete homeostatic recovery in vivo. Compensatory changes in voltage-gated conductances in motoneurons were observed by 12 hours of blockade, but not changes in synaptic strength. It was unclear whether changes in voltage-gated conductances were observed by 2 hours of blockade when the recovery actually begins. Further, compensatory changes in voltage-gated conductances were not observed following glutamatergic blockade where embryonic movements were blocked but then recovered in a similar manner to GABAergic blockade. In this study, we discover a mechanism for homeostatic recovery in these first hours of neurotransmitter receptor blockade. In the first 6 hours of GABAergic or glutamatergic blockade there was a clear depolarization of resting membrane potential in both motoneurons and interneurons. These changes reduced action potential threshold and were mainly observed in the continued presence of the antagonist. Therefore, it appears that fast changes in resting membrane potential represent a key fast homeostatic mechanism for the maintenance of network activity in the living embryonic nervous system.SignificanceHomeostatic plasticity represents a set of mechanisms that act to recover cellular or network activity following a challenge to that activity and is thought to be critical for the developmental construction of the nervous system. The chick embryo afforded us the opportunity to observe in a living developing system the timing of the homeostatic recovery of network activity following 2 distinct perturbations. Because of this advantage, we have identified a novel homeostatic mechanism that actually occurs as the network recovers and is therefore likely to contribute to nervous system homeostasis. We found that a depolarization of the resting membrane potential in the first hour of the perturbations enhances excitability and supports the recovery of embryonic spinal network activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3