iPSC-derived Cancer Organoids Recapitulate Genomic and Phenotypic Alterations of c-met-mutated Hereditary Kidney Cancer

Author:

Hwang Jin Wook,Desterke Christophe,Féraud Olivier,Richard Stephane,Ferlicot Sophie,Verkarre Virginie,Patard Jean Jacques,Loisel-Duwattez Julien,Foudi Adlen,Griscelli Frank,Bennaceur-Griscelli Annelise,Turhan Ali GORCID

Abstract

SUMMARYHereditary cancers with cancer-predisposing mutations represent unique models of human oncogenesis as a driving oncogenic event is present in germline, exposing the healthy member of a family to the occurrence of cancer. The study of the secondary events in a tissue-specific manner is now possible by the induced pluripotent stem cell (iPSC) technology offering the possibility to generate an unlimited source of cells that can be induced to differentiate towards a tissue at risk of malignant transformation. We report here for the first time, the generation of a c-met-mutated iPSC lines from the somatic cells of a patient with type 1 papillary renal cell carcinoma (PRCC). We demonstrate the feasibility of kidney differentiation with iPSC-derived organoids expressing markers of kidney progenitors with presence of tight junctions and brush borders in tubular structures at transmission electron microscopy. Importantly, c-met-mutated kidney organoids expressed PRCC markers both in vitro and in vivo in NSG mice. Gene expression profiling of c-met-mutated iPSC-derived organoid structures showed striking molecular similarities with signatures found in a large cohort of PRCC patient samples and identified 11 common genes. Among these, BHLHE40 and KDM4C, well-known factors involved in PRCC pathogenesis, were expressed in c-met-mutated kidney organoids. This analysis applied to primary cancers with and without c-met mutation showed overexpression of the BHLHE40 and KDM4C only in the c-met-mutated PRCC tumors, as predicted by c-met-mutated organoid transcriptome. These data represent therefore the first proof of concept of the generation of “renal carcinoma in a dish” model using c-met-mutated iPSC-derived organoids, opening new perspectives for discovery of novel potentially predictive disease markers and novel drugs for future precision medicine strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Clear Cell Renal Cell Carcinoma: Molecular Pathogenesis, Innovative Modeling, and Targeted Therapeutic Approaches;International Journal of Translational Medicine;2022-11-23

2. Kidney organoids: current knowledge and future directions;Cell and Tissue Research;2022-01-28

3. Organoid As a Novel Technology for Disease Modeling;Journal of Basic and Clinical Health Sciences;2021-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3