Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays

Author:

Urban Daniel J.,Martinez Natalia J.,Davis Mindy I.,Brimacombe Kyle R.,Cheff Dorian M.,Lee Tobie D.,Henderson Mark J.,Titus Steven A.,Pragani Rajan,Rohde Jason M.,Wang Yuhong,Karavadhi Surendra,Shah Pranav,Lee Olivia W.,Wang Amy,McIver Andrew,Zheng Hongchao,Wang Xiaodong,Xu Xin,Jadhav Ajit,Simeonov Anton,Shen Min,Boxer Matthew B.,Hall Matthew D.

Abstract

AbstractIsocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that are mutated in a variety of cancers to confer a gain-of-function activity resulting in the accumulation and secretion of an oncometabolite, D-2-hydroxyglutarate (2-HG). Accumulation of 2-HG can result in epigenetic dysregulation and a block in cellular differentiation, suggesting these mutations play a role in neoplasia. Based on its potential as a cancer target, a number of small molecule inhibitors have been developed to specifically inhibit mutant forms of IDH (mIDH1 and mIDH2). Here, a panel of mIDH inhibitors were systematically profiled using biochemical, cell-based, and tier-one ADME techniques. We quantified the biochemical effect of each inhibitor on mIDH1 (R132H and R132C) and mIDH2 (R172Q). The effect of these inhibitors on 2-HG concentrations in seven cell lines representing five different IDH1 mutations in both 2D and 3D cell cultures was assessed. Target engagement of these inhibitors was analyzed utilizing cellular thermal shift assays (CETSA), the effects of inhibitors on reversing 2-HG-induced block on leukemic cellular differentiation. We conclude from our mIDH1 assay panel that AG-120 and a Novartis inhibitor exhibited excellent activity in all biochemical and most cellular assays. While AG-120 has superior DMPK properties, it lacks efficacy a leukemic differentiation model. In conclusion, we present a comprehensive suite of in vitro preclinical drug development assays that can be used as a tool-box to identify lead compounds for mIDH drug discovery programs, as well as what we believe is the most comprehensive publically available dataset on the top mIDH inhibitors.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3