Abstract
SummaryCell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Using phosphoproteomicsin vivoand kinase reactionsin vitro, we find that mutation of the PP reduces phosphorylation of several CDK substrates, including the Bud6 subunit of the polarisome and the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome. We conclude that the cyclin PP, like Cks1, controls the timing of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献