Metagenome-assembled genomes provide insight into the microbial taxonomy and ecology of the Buhera Soda Pans, Zimbabwe

Author:

Mangoma NgonidzasheORCID,Zhou Nerve,Ncube Thembekile

Abstract

AbstractThe use of metagenomics has substantially improved our understanding of the taxonomy, phylogeny and ecology of extreme environment microbiomes. Advances in bioinformatics now permit the reconstruction of almost intact microbial genomes, called metagenome-assembled genomes (MAGs), from metagenomic sequence data, allowing for more precise cell-level taxonomic, phylogenetic and functional profiling of uncultured extremophiles. Here, we report on the recovery and characterisation of metagenome-assembled genomes from the Buhera soda pans located in eastern Zimbabwe. This ecosystem has not been studied despite its unique geochemistry and potential as a habitat for unique microorganisms. Metagenomic DNA from the soda pan was sequenced using the DNA Nanoball Sequencing (DNBSEQR) technique. Sequence analysis, done on the Knowledgebase (KBase) platform, involved quality assessment, read assembly, contig binning, and MAG extraction. The MAGs were subjected to taxonomic placement, phylogenetic profiling and functional annotation in order to establish their possible ecological roles in the soda pan ecosystem. A total of 16 bacterial MAGs of medium to high quality were recovered, all distributed among five phyla dominated byProteobacteriaandFirmicutes. Of the ten MAGs that were taxonomically classified up to genus level, five of them belonged to the halophilic/ haloalkaliphilic generaAlkalibacterium, Vibrio, Thioalkalivibrio, CecembiaandNitrincola. Functional profiling revealed the use of diverse carbohydrate-metabolising pathways among the MAGs, with glycolysis and the pentose phosphate pathways appearing to be key pathways in this ecosystem. Several MAGs harboured both sulphur/ sulphate reduction and respiratory pathways, suggesting a possible mechanism of energy generation through sulphur/ suphate respiration. In conclusion, this study revealed a highly taxonomically and functionally diverse microbial community in the soda pans, dominated by halophilic and haloalkaliphilic bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3