Long-read sequencing reveals the RNA isoform repertoire of neuropsychiatric risk genes in human brain

Author:

Paoli-Iseppi Ricardo DeORCID,Joshi Shweta,Gleeson JosieORCID,Joseph Prawer Yair DavidORCID,You YupeiORCID,Agarwal Ria,Li Anran,Hull Anthea,Whitehead Eloise Marie,Seo Yoonji,Kujawa Rhea,Chang Raphael,Dutt MrigaORCID,McLean Catriona,Parker Benjamin LeoORCID,Clark Michael BenORCID

Abstract

AbstractNeuropsychiatric disorders are highly complex conditions and the risk of developing a disorder has been tied to hundreds of genomic variants that alter the expression and/or products (isoforms) made by risk genes. However, how these genes contribute to disease risk and onset through altered expression and RNA splicing is not well understood. Combining our new bioinformatic pipeline IsoLamp with nanopore long-read amplicon sequencing, we deeply profiled the RNA isoform repertoire of 31 high-confidence neuropsychiatric disorder risk genes in human brain. We show most risk genes are more complex than previously reported, identifying 363 novel isoforms and 28 novel exons, including isoforms which alter protein domains, and genes such asATG13andGATAD2Awhere most expression was from previously undiscovered isoforms. The greatest isoform diversity was present in the schizophrenia risk geneITIH4. Mass spectrometry of brain protein isolates confirmed translation of a novel exon skipping event in ITIH4, suggesting a new regulatory mechanism for this gene in brain. Our results emphasize the widespread presence of previously undetected RNA and protein isoforms in brain and provide an effective approach to address this knowledge gap. Uncovering the isoform repertoire of neuropsychiatric risk genes will underpin future analyses of the functional impact these isoforms have on neuropsychiatric disorders, enabling the translation of genomic findings into a pathophysiological understanding of disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3