Theileria annulataInfection Promotes p53 suppression, Genomic Instability and DNA deaminase APOBEC3H upregulation leading to cancer-like phenotype in host cells

Author:

Dandesena Debabrata,Suresh Akash,Budhwar Roli,Godwin Jeffrey,Singh Sakshi,Subudhi Madhusmita,T Amruthanjali,Roy Sonti,A Vengatachala Moorthy,Bhandari Vasundhra,Sharma Paresh

Abstract

AbstractTheileria annulata-infected host leukocytes display cancer-like phenotypes, though the precise mechanism is yet to be fully understood. The occurrence of cancer-like phenotypes inTheileria-infected leukocytes may be attributed to various factors, including genomic instability and acquired mutations, a crucial trait that underpins the genetic foundation of cancer. This paper presents WGS data and bioinformatic analyses to reveal point mutations and large-scale alterations in six clinically relevantT. annulata-infected cell lines. We identified 7867 exon-linked somatic mutations common to all cell lines, and cancer association analysis showed significant accumulation in oncogenes (FLT4, NOTCH2, MAP3K1, DAXX, FCGR2B, ROS1) and tumor suppressor genes (BARD1, KMT2C, GRIN2A, BAP1) implicated in established critical cancer processes. We demonstrated that a crizotinib-induced blockade of the ROS1 oncogenic protein, which harbored the most mutations, led to the death of infected leukocytes. This is consistent with the significant role of ROS1 in parasite-induced leukocyte transformation. In addition, we found somatic mutations in genes involved in genome instability and the DDR pathway. Our findings support the notion that ROS1 and Nutulin 3a are valid targets for intervention, and the suppression of TP53, a crucial tumor suppressor gene, may play a significant role in cell immortalization. We also show that upon infection with the parasite, bovine cells upregulate the expression of APOBEC3H, a DNA mutator likely responsible for the detected mutations. Our study highlights howT. annulatatransforms leukocytes to gain selective advantage via mutation, and our observations could steer future research towards a mechanistic understanding of disease pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3