The Effect on Speech-in-Noise Perception of Real Faces and Synthetic Faces Generated with either Deep Neural Networks or the Facial Action Coding System

Author:

Yu YingjiaORCID,Lado Anastasia,Zhang Yue,Magnotti John F.ORCID,Beauchamp Michael S.ORCID

Abstract

AbstractThe prevalence of synthetic talking faces in both commercial and academic environments is increasing as the technology to generate them grows more powerful and available. While it has long been known that seeing the face of the talker improves human perception of speech-in-noise, recent studies have shown that synthetic talking faces generated by deep neural networks (DNNs) are also able to improve human perception of speech-in-noise. However, in previous studies the benefit provided by DNN synthetic faces was only about half that of real human talkers. We sought to determine whether synthetic talking faces generated by an alternative method would provide a greater perceptual benefit. The facial action coding system (FACS) is a comprehensive system for measuring visually discernible facial movements. Because the action units that comprise FACS are linked to specific muscle groups, synthetic talking faces generated by FACS might have greater verisimilitude than DNN synthetic faces which do not reference an explicit model of the facial musculature. We tested the ability of human observers to identity speech-in-noise accompanied by a blank screen; the real face of the talker; and synthetic talking face generated either by DNN or FACS. We replicated previous findings of a large benefit for seeing the face of a real talker for speech-in-noise perception and a smaller benefit for DNN synthetic faces. FACS faces also improved perception, but only to the same degree as DNN faces. Analysis at the phoneme level showed that the performance of DNN and FACS faces was particularly poor for phonemes that involve interactions between the teeth and lips, such as /f/, /v/, and /th/. Inspection of single video frames revealed that the characteristic visual features for these phonemes were weak or absent in synthetic faces. Modeling the realvs.synthetic difference showed that increasing the realism of a few phonemes could substantially increase the overall perceptual benefit of synthetic faces, providing a roadmap for improving communication in this rapidly developing domain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3