Insights into post-translational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP

Author:

Meyer Gretchen A.ORCID,Ferey Jeremie L.A.,Sanford James A.,Fitzgerald Liam S.,Greenberg Akiva E.,Svensson Kristoffer,Greenberg Michael J.ORCID,Schenk Simon

Abstract

AbstractMice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction inex vivocontractile function in the extensor digitorum longus (EDL) and a ∼65% reduction inin vivoankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.New & NoteworthyThe mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both p300 and CBP in skeletal muscle remains unknown. Here we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+and bypasses membrane depolarization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3