FLYNC: A Machine Learning-Driven Framework for Discovering Long Non-Coding RNAs inDrosophila melanogaster

Author:

dos Santos Ricardo F.,Baptista Tiago,Marques Graça S.,Homem Catarina C. F.ORCID

Abstract

ABSTRACTNon-coding RNAs have increasingly recognized roles in critical molecular mechanisms of disease. However, the non-coding genome ofDrosophila melanogaster, one of the most powerful disease model organisms, has been understudied. Here, we present FLYNC – FLY Non-Coding discovery and classification – a novel machine learning-based model that predicts the probability of a newly identified RNA transcript being a long non-coding RNA (lncRNA). Integrated into an end-to-end bioinformatics pipeline capable of processing single-cell or bulk RNA sequencing data, FLYNC outputs potential new non-coding RNA genes. FLYNC leverages large-scale genomic and transcriptomic datasets to identify patterns and features that distinguish non-coding genes from protein-coding genes, thereby facilitating lncRNA prediction. We demonstrate the application of FLYNC to publicly availableDrosophilaadult head bulk transcriptome and single-cell transcriptomic data fromDrosophilaneural stem cell lineages and identify several novel tissue- and cell-specific lncRNAs. We have further experimentally validated the existence of a set of FLYNC positive hits by qPCR. Overall, our findings demonstrate that FLYNC serves as a robust tool for identifying lncRNAs inDrosophila melanogaster, transcending current limitations in ncRNA identification and harnessing the potential of machine learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3