Causal role of medial superior frontal cortex on enhancing neural information flow and self-agency judgments in the self-agency network

Author:

Jia Yingxin,Kudo Kiwamu,Jariwala Namasvi,Tarapore Phiroz,Nagarajan Srikantan,Subramaniam Karuna

Abstract

AbstractSelf-agency is being aware of oneself as the agent of one’s thoughts and actions. Self-agency is necessary for successful interactions with the outside world (reality-monitoring). Prior research has shown that the medial superior prefrontal gyri (mPFC/SFG) may represent one neural correlate underlying self-agency judgments. However, the causal relationship remains unknown. Here, we applied high-frequency 10Hz repetitive transcranial magnetic stimulation (rTMS) to modulate the excitability of the mPFC/SFG site that we have previously shown to mediate self-agency. For the first time, we delineatecausalneural mechanisms, revealing precisely how rTMS modulates SFG excitability and impactsdirectionalneural information flow in the self-agency network by implementing innovative magnetoencephalography (MEG) phase-transfer entropy (PTE) metrics, measured from pre-to-post rTMS. We found that, compared to control rTMS, enhancing SFG excitability by rTMS induced significant increases in information flow between SFG and specific cingulate and paracentral regions in the self-agency network in delta-theta, alpha, and gamma bands, which predicted improved self-agency judgments. This is the first multimodal imaging study in which we implement MEG PTE metrics of 5D imaging of space, frequency and time, to provide cutting-edge analyses of thecausalneural mechanisms of how rTMS enhances SFG excitability and improves neural information flow between distinct regions in the self-agency network to potentiate improved self-agency judgments. Our findings provide a novel perspective for investigatingcausalneural mechanisms underlying self-agency and create a path towards developing novel neuromodulation interventions to improve self-agency that will be particularly useful for patients with psychosis who exhibit severe impairments in self-agency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3