Active Mutual Conjoint Estimation of Multiple Contrast Sensitivity Functions

Author:

Marticorena Dom CP,Wong Quinn Wai,Browning Jake,Wilbur Ken,Davey PinakinORCID,Seitz Aaron R.ORCID,Gardner Jacob R.ORCID,Barbour Dennis L.ORCID

Abstract

AbstractRecent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few. This paper describes a novel kernel for CSF estimation that is more flexible than a kernel based on strictly functional forms. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.PrecisMachine learning contrast sensitivity function estimation is improved by incorporation of additional information about the nature of the underlying and data from other eyes.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. Conjoint psychometric field estimation for bilateral audiometry

2. Barbour, D. L. , Song, X. , Ledbetter, N. , Gardner, J. , & Weinberger, K. (2021). Fast, Continuous Psychometric Estimation System Utilizing Machine Learning and Associated Method of Use (United States Patent US11037677B2). https://patents.google.com/patent/US11037677B2

3. An open-source implementation of the Quick CSF method

4. Visual Field Estimation by Probabilistic Classification

5. Comparing the Shape of Contrast Sensitivity Functions for Normal and Low Vision

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3