AimSeg: a machine-learning-aided tool for axon, inner tongue and myelin segmentation

Author:

Rondelli Ana Maria,Morante-Redolat Jose Manuel,Bankhead PeterORCID,Vernay Bertrand,Williams AnnaORCID,Carrillo-Barberà PauORCID

Abstract

AbstractElectron microscopy (EM) images of axons and their ensheathing myelin from both the central and peripheral nervous system are used for assessing myelin formation, degeneration (demyelination) and regeneration (remyelination). The g-ratio is the gold standard measure of assessing myelin thickness and quality, and traditionally is determined from measurements done manually from EM images – a time-consuming endeavour with limited reproducibility. These measurements have also historically neglected the innermost uncompacted myelin sheath, known as the inner myelin tongue. Nonetheless, the inner tongue has been shown to be important for myelin growth and some studies have reported that certain conditions can elicit its enlargement. Ignoring this fact may bias the standard g-ratio analysis, whereas quantifying the uncompacted myelin has the potential to provide novel insights in the myelin field. In this regard, we have developed AimSeg, a bioimage analysis tool for axon, inner tongue and myelin segmentation. Aided by machine learning classifiers trained on tissue undergoing remyelination, AimSeg can be used either as an automated workflow or as a user-assisted segmentation tool. Validation results show good performance segmenting all three fibre components, with the assisted segmentation showing the potential for further improvement with minimal user intervention. This results in a considerable reduction in time for analysis compared with manual annotation. AimSeg could also be used to build larger, high quality ground truth datasets to train novel deep learning models. Implemented in Fiji, AimSeg can use machine learning classifiers trained in ilastik. This, combined with a user-friendly interface and the ability to quantify uncompacted myelin, makes AimSeg a unique tool to assess myelin growth.Author SummaryMyelin is formed by specialised cells that wrap themselves around axons and has a major role in the function, protection, and maintenance of nerves. These functions are disturbed by demyelinating diseases, such as multiple sclerosis. In this work we present AimSeg, a new tool based on artificial intelligence algorithms (machine learning) to assess myelin growth on electron microscopy images. Whereas standard metrics and previous computational methods focus on quantifying compact myelin, AimSeg also quantifies the inner myelin tongue (uncompacted myelin). This structure has been largely overlooked despite the fact that it has an important role in the process of myelin growth (both during development and in the adult brain) and recent studies have reported morphological changes associated with some diseases. We report the performance of AimSeg, both as a fully automated approach and in an assisted segmentation workflow that enables the user to curate the results on-the-fly while reducing human intervention to the minimum. Therefore, AimSeg stands as a novel bioimage analysis tool that meets the challenges of assessing myelin growth by supporting both standard metrics for myelin evaluation and the quantification of the uncompacted myelin in different conditions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3