Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow trout

Author:

Bourdon CharlotteORCID,Cachot JérômeORCID,Gonzalez PatriceORCID,Couture PatriceORCID

Abstract

AbstractSince the global ban on tributyltin in antifouling paints in 2008 by the International Maritime Organization, new products have been developed and brought to the market. Among them, copper pyrithione (CuPT) is used, but its mechanisms of toxicity remain little known. This project aimed to identify and measure the impacts of aqueous exposure to CuPT, an organic compound, and compare it to ionic Cu2+added in the form of its inorganic salt CuSO4, in equivalent Cu2+molar concentrations, on rainbow trout (Oncorhynchus mykiss) juveniles under controlled laboratory conditions. A 24-hour acute exposure was performed with nominal concentrations of 50 and 100 µg/L Cu from either CuSO4or CuPT (labelled CuSO4_50, CuSO4_100, CuPT_50 and CuPT_100, respectively). The CuPT_100 condition induced 85 % mortality in 15 hours and the CuPT_50 condition induced 5 % mortality in the same period. A chronic exposure was then performed with nominal concentrations of 1 and 10 µg/L Cu from CuPT and 10 µg/L Cu2+from CuSO4(labelled CuSO4_1, CuSO4_10, CuPT_1 and CuPT_10, respectively). Measured aqueous concentrations of Cu2+were slightly higher than nominal concentrations for the lower concentrations, but lower for the CuPT_10 condition. The 8- and 16-day toxicokinetics showed a greater accumulation of copper in the gills of fish exposed to CuPT compared to fish exposed to Cu2+from CuSO4. The CuPT_10 condition induced 35 and 38 % mortality after 8 and 16 days of exposure, while no mortality was observed in the CuSO4_10 condition. The growth of juveniles was not impacted during the 16 days of exposure for any condition. The activity of antioxidant enzymes (CAT, SOD, GPx) did not respond to exposure to either contaminant. The expression of genes involved in the antioxidant response (sod1,sod2,gpx), detoxification (cyp1a,mt1x,mt2x), Cu transport (ctr1,ctr2,slc11a2), energy metabolism (AcoAc,cox, 12S) and cell cycle regulation (bax) strongly decreased at Day 8 in the gills and at Day 16 in the liver of CuPT-exposed fish in comparison to controls at the same time point. This study clearly showed that the toxicity of Cu in the form of CuPT was much higher than that of ionic Cu from CuSO4and provides new information on the compound that will be useful to develop regulations concerning its use and release in the aquatic environment.Credit author statementCharlotte Bourdon: Methodology, Validation, Investigation, Writing – Original Draft. Jérôme Cachot: Conceptualization, Methodology, Validation, Investigation, Writing – Original Draft, Supervision. Patrice Gonzalez: Validation, Investigation, Writing – Original Draft, Supervision, Funding acquisition. Patrice Couture: Conceptualization, Methodology, Validation, Investigation, Writing – Original Draft, Supervision, Project administration, Funding acquisition.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3