Charge-State-Dependent Collision-Induced Dissociation Behaviors of RNA Oligonucleotides via High-Resolution Mass Spectrometry

Author:

Sun Rui-Xiang,Zuo Mei-Qing,Zhang Ji-Shuai,Dong Meng-Qiu

Abstract

ABSTRACTMass spectrometry (MS)-based analysis of RNA oligonucleotides (oligos) plays an increasingly important role in the development of RNA therapeutics and in epitranscriptomic studies. However, MS fragmentation behaviors of RNA oligos are understood insufficiently. In this study, we characterized the negative-ion-mode fragmentation behaviors of 26 synthetic RNA oligos of four to eight nucleotides (nt) in length by collision-induced dissociation (CID) using a high-resolution, accurate-mass instrument. We find that in the CID spectra acquired under the normalized collisional energy of 35%, ∼70% of the total peak intensity belonged to sequencing ions (a-B, a, b, c, d, w, x, y, z), ∼25% belonged to precursor ions with either complete or partial loss of a nucleobase in the form of a neutral or an anion, and the remainder were internal ions and anionic nucleobases. Of the sequencing ions, the most abundant species werey, c, w, a-B, andaions. The charge state of the RNA precursor ions strongly affected their fragmentation behaviors. As the precursor charge increased from -1 to -5, the fractional intensity of sequencing ions in the CID spectra decreased, whereas the fractional intensity of precursor ions with neutral and/or charged losses of a nucleobase increased. Moreover, RNA oligos containing U, especially at the 3′ terminus, tended to produce precursors that lost HNCO and/or NCO-, which presumably corresponded to isocyanic acid and cyanate anion, respectively. These findings build a strong foundation for mechanistic understanding of RNA fragmentation by MS/MS, contributing to future automated identification of RNA oligos from their CID spectra in a more efficient way.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3