Temporal Dynamics of Activity in Default Mode Network Suggest a Role in Top-Down Processing for Trial Responses

Author:

Mastrovito D.ORCID,Hanson C.,Hanson S.

Abstract

The default mode network (DMN) is a collection of brain regions including midline frontal and parietal structures, medial and lateral temporal lobes, and lateral parietal cortex. Although there is evidence that the network can be subdivided into at least two subcomponents, the network reliably exhibits highly correlated activity both at rest and during task performance. Current understanding regarding the function of the DMN rests on a large body of research indicating that activity in the network decreases during task epochs of experimental paradigms relative to inter-trial intervals. A seeming contradiction arises when the experimental paradigm includes tasks involving autobiographical memory, thinking about one’s self, planning for the future, or social cognition. In such cases, the DMN’s activity increases and is correlated with attentional networks. Some have therefore concluded that the DMN supports advanced human cognitive abilities such as interoceptive processing and theory of mind. This conclusion may be called into question by evidence of correlated activity in homologous brain regions in other, even non-primate, species. Thus, there are contradictory findings related to the function of the DMN that have been difficult to integrate into a coherent theory regarding its function. Using data from the Human Connectome Project, we explore the temporal dynamics of activity in different regions of the DMN in relation to stimulus presentation. We show that generally the dorsal portion of the network exhibits only a transient initial decrease in activity at the start of trials that increases over trial duration. The ventral component often has more similarity in its time course to that of task-activated areas. We propose that task-associated ramping dynamics in the network are incompatible with a task-negative view of the DMN and propose the dorsal and ventral sub-components of network may rather work together to support bottom-up salience detection and subsequent top-down voluntary action. In this context, we re-interpret the body of anatomical and neurophysiological experimental evidence, arguing that this interpretation can accommodate the seeming contradictions regarding DMN function in the extant literature.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3