ERBB4-mediated signaling is a mediator of resistance to BTK and PI3K inhibitors in B cell lymphoid neoplasms

Author:

Arribas Alberto J.ORCID,Napoli SaraORCID,Cascione LucianoORCID,Barnabei LauraORCID,Sartori GiulioORCID,Cannas Eleonora,Gaudio Eugenio,Tarantelli ChiaraORCID,Mensah Afua A.ORCID,Spriano FilippoORCID,Zucchetto AntonellaORCID,Rossi Francesca M.ORCID,Rinaldi AndreaORCID,de Moura Manuel Castro,Jovic Sandra,Pittau Roberta Bordone,Stathis Anastasios,Stussi GeorgORCID,Gattei ValterORCID,Brown Jennifer R.,Esteller ManelORCID,Zucca EmanueleORCID,Rossi Davide,Bertoni FrancescoORCID

Abstract

AbstractBTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead as single agents to long-lasting complete remission is rather limited especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. Here, we show that the overexpression of ERBB4 and its ligands represents a modality for B cell neoplastic cells to bypass the anti-tumor activity of BTK and PI3K inhibitors and that targeted pharmacological interventions can restore sensitivity to the small molecules.We started from a marginal zone lymphoma (MZL) cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole exome sequencing, and pharmacological screening which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the anti-tumor activity of various BTK and PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK and PI3K inhibitors in parental cells but also in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. Multi-omics analysis underlined that an epigenetic reprogramming affected the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were shown to be expressed in clinical samples, further extending the findings of the study.In conclusions, we identified a novel ERBB4-driven mechanism of resistance to BTK and PI3K inhibitors and treatments that appear to overcome it.Key pointsA mechanism of secondary resistance to the PI3Kδ and BTK inhibitors in B cell neoplasms driven by secreted factors.Resistance can be reverted by targeting ERBB signaling.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3