Reconstructing the pressure field around a swimming fish using a physics-informed neural network

Author:

Calicchia Michael A.,Mittal Rajat,Seo Jung-Hee,Ni Rui

Abstract

AbstractHydrodynamic pressure is a physical quantity that is utilized by fish and many other aquatic animals to generate thrust and sense the surrounding environment. To advance our understanding of how fish react to unsteady flows, it is necessary to intercept the pressure signals sensed by their lateral line system. In this study, the authors propose a new, non-invasive method for reconstructing the instantaneous pressure field around a swimming fish from 2D particle image velocimetry (PIV) measurements. The method uses a physics-informed neural network (PINN) to predict an optimized solution for the velocity and pressure fields that satisfy in an ℒ2sense both the Navier Stokes equations and the constraints put forward by the measurements. The method was validated using a direct numerical simulation of a swimming mackerel,Scomber scombrus, and was applied to empirically obtained data of a turning zebrafish,Danio rerio. The results demonstrate that when compared to traditional methods that rely on directly integrating the pressure gradient field, the PINN is less sensitive to the spatio-temporal resolution of the velocity field measurements and provides a more accurate pressure reconstruction, particularly on the surface of the body.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3