The unfolded protein response of the endoplasmic reticulum protectsCaenorhabditis elegansagainst DNA damage caused by stalled replication forks

Author:

Xu Jiaming,Sabatino Brendil,Taubert StefanORCID

Abstract

AbstractAll animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis while DNA damage responses (DDRs) maintains genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primasespri-1orpri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) inCaenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like ER kinase (pek-1) branches of the UPR-ER. Interestingly, activation of the UPR-ER output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators,ire-1and X-box binding protein (xbp-1), and instead required the third branch of the UPR-ER, activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the UPR-ER, but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss ofire-1orpek-1sensitized animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis ofpri-1embryos revealed several deregulated processes that could cause UPR-ER activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the UPR-ER, but not other UPRs, responds to replication fork stress and that the UPR-ER is required to alleviate this stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3