Heterogeneity in Preclinical Alzheimer’s Disease Trial Cohort Identified by Image-based Data-Driven Disease Progression Modelling

Author:

Shand CameronORCID,Markiewicz Pawel J.ORCID,Cash David M.ORCID,Alexander Daniel C.ORCID,Donohue Michael C.ORCID,Barkhof FrederikORCID,Oxtoby Neil P.ORCID,

Abstract

AbstractImportanceUndetected biological heterogeneity adversely impacts trials in Alzheimer’s disease because rate of cognitive decline — and perhaps response to treatment — differs in subgroups. Recent results show that data-driven approaches can unravel the heterogeneity of Alzheimer’s disease progression. The resulting stratification is yet to be leveraged in clinical trials.ObjectiveInvestigate whether image-based data-driven disease progression modelling could identify baseline biological heterogeneity in a clinical trial, and whether these subgroups have prognostic or predictive value.DesignScreening data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease (A4) Study collected between April 2014 and December 2017, and longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) observational study downloaded in February 2022 were used.SettingThe A4 Study is an interventional trial involving 67 sites in the US, Canada, Australia, and Japan. ADNI is a multi-center observational study in North America.ParticipantsCognitively unimpaired amyloid-positive participants with a 3-Tesla T1-weighted MRI scan. Amyloid positivity was determined using florbetapir PET imaging (in A4) and CSF Aβ(1-42) (in ADNI).Main Outcomes and MeasuresRegional volumes estimated from MRI scans were used as input to the Subtype and Stage Inference (SuStaIn) algorithm. Outcomes included cognitive test scores and SUVr values from florbetapir and flortaucipir PET.ResultsWe included 1,240 Aβ+ participants (and 407 Aβ− controls) from the A4 Study, and 731 A4-eligible ADNI participants. SuStaIn identified three neurodegeneration subtypes —Typical, Cortical, Subcortical— comprising 523 (42%) individuals. The remainder are designated subtype zero (insufficient atrophy). Baseline PACC scores (A4 primary outcome) were significantly worse in theCorticalsubtype (median = -1.27, IQR=[-3.34,0.83]) relative to both subtype zero (median=-0.013, IQR=[-1.85,1.67], P<.0001) and theSubcorticalsubtype (median=0.03, IQR=[-1.78,1.61], P=.0006). In ADNI, over a four-year period (comparable to A4), greater cognitive decline in the mPACC was observed in both theTypical(−0.23/yr; 95% CI, [-0.41,-0.05]; P=.01) andCortical(−0.24/yr; [-0.42,-0.06]; P=.009) subtypes, as well as the CDR-SB (Typical: +0.09/yr, [0.06,0.12], P<.0001; andCortical: +0.07/yr, [0.04,0.10], P<.0001).Conclusions and RelevanceIn a large secondary prevention trial, our image-based model detected neurodegenerative heterogeneity predictive of cognitive heterogeneity. We argue that such a model is a valuable tool to be considered in future trial design to control for previously undetected variance.Key PointsQuestionCan MRI-based computational subtypes of preclinical neurodegeneration predict cognitive outcomes?FindingsIn this cross-sectional analysis of magnetic resonance imaging (MRI) data at screening (pre-randomization) in the preclinical Anti-Amyloid Treatment in Asymptomatic Alzheimer disease (A4) Study, we detected considerable neurodegenerative heterogeneity using data-driven disease progression modelling. The MRI-based computational subtypes identified by Subtype and Stage Inference (SuStaIn) differed in baseline cognitive test scores (A4) and in longitudinal cognitive decline (ADNI), with sufficient heterogeneity to potentially obscure treatment effect in A4 trial outcomes.MeaningData-driven disease progression modelling of screening MRI scans can predict heterogeneity in cognitive performance/decline and potentially reduce heterogeneity in future clinical trials.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3