The most probable ancestral sequence reconstruction yields proteins without systematic bias in thermal stability or activity

Author:

Sennett Michael A.ORCID,Beckett Brian C.ORCID,Theobald Douglas L.ORCID

Abstract

AbstractAncestral sequence resurrection (ASR) is the inference of extinct biological sequences from extant sequences, the most popular of which are based on probabilistic models of evolution. ASR is becoming a popular method for studying the evolution of enzyme characteristics. The properties of ancestral enzymes are biochemically and biophysically characterized to gain some knowledge regarding the origin of some enzyme property. Current methodology relies on resurrection of the single most probable (SMP) sequence and is systematically biased. Previous theoretical work suggests this will result in a thermostability bias in resurrected SMP sequences, and even the activity, calling into question inferences derived from ancestral protein properties. We experimentally test the potential stability bias hypothesis by resurrecting 40 malate and lactate dehydrogenases. Despite the methodological bias in resurrecting an SMP protein, the measured biophysical and biochemical properties of the SMP protein are not biased in comparison to other, less probable, resurrections. In addition, the SMP protein property seems to be representative of the ancestral probability distribution. Therefore, the conclusions and inferences drawn from the SMP protein are likely not a source of bias.SignificanceAncestral sequence resurrection (ASR) is a powerful tool for: determining how new protein functions evolve; inferring the properties of an environment in which species existed; and protein engineering applications. We demonstrate, using lactate and malate dehydrogenases (L/MDHs), that resurrecting the single most probable sequence (SMP) from a maximum likelihood phylogeny does not result in biased activity and stability relative to sequences sampled from the posterior probability distribution. Previous studies using experimentally measured phenotypes of SMP sequences to make inferences about the environmental conditions and the path of evolution are likely not biased in their conclusions. Serendipitously, we discover ASR is also a valid tool for protein engineering because sampled reconstructions are both highly active and stable.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3