The circadian clock and darkness control natural competence in cyanobacteria

Author:

Taton ArnaudORCID,Erikson Christian,Yang Yiling,Rubin Benjamin E.ORCID,Rifkin Scott A.ORCID,Golden James W.ORCID,Golden Susan S.ORCID

Abstract

Natural genetic competence-based transformation contributed to the evolution of prokaryotes, including the cyanobacterial phylum that established oxygenic photosynthesis. The cyanobacteriumSynechococcus elongatusis noted both as a model system for analyzing a prokaryotic circadian clock and for its facile, but poorly understood, natural competence. Here a genome-wide screen aimed at determining the genetic basis of competence in cyanobacteria identified all genes required for natural transformation inS. elongatus, including conserved Type IV pilus, competence-associated, and newly described genes, and revealed that the circadian clock controls the process. The findings uncover a daily program that determines the state of competence inS. elongatusand adapts to seasonal changes of day-length. Pilus biogenesis occurs daily in the morning, but competence is maximal upon the coincidence of circadian dusk and the onset of darkness. As in heterotrophic bacteria, where natural competence is conditionally regulated by nutritional or other stress, cyanobacterial competence is conditional and is tied to the daily cycle set by the cell’s most critical nutritional source, the Sun.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3