Prediction of Impact Strength of TIG Welded Cr-Mo Steel Using Artificial Neural Networks

Author:

Adewuyi Reuben,Aweda Jacob,Ogunwoye Faith,Omoniyi Peter,Jen Tien-Chien

Abstract

Welding is a critical and energy-intensive process with significant importance in the manufacturing industry, enabling the creation of joints capable of withstanding diverse loads without failure. Accurate prediction of welding parameters' effects on the thermal cycle and strength of metals during and after welding is essential to ensure the reliability of welds. This study investigates the influence of welding parameters such as welding current, material thickness, number of weld passes, and electrode diameter on the impact strength of Cr-Mo steel bars. Pure tungsten with 2% thoriated Tungsten Inert Gas (TIG) electrodes was used to join the metal sheets autogenously. Artificial neural network (ANN) was used in creating the model that predicts the impact strength of the steel. Sample with welding parameters of 15 mm thickness, 90 A current, 3 weld passes, and Ø2.4 mm electrode size exhibited the highest impact strength. Furthermore, the analysis of variance (ANOVA) results show that the material thickness and number of weld passes contribute significantly to the impact strength of the steel. The ANN model trained by the Levenberg-Marquardt algorithm had an average training dataset root mean square error (RSME) of 4.12%. This study contributes to the reliability and performance of welded joints in various applications.

Publisher

The Netherlands Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3