SARS-COV2 VARIANTS AND VACCINES MRNA SPIKES FIBONACCI NUMERICAL UA/CG METASTRUCTURES

Author:

Perez Jean Claude

Abstract

In this paper, we suggest a biomathematical numerical method for analysing mRNA nucleotides sequences based on UA/CG Fibonacci numbers proportions. This method is used to evaluate then compare the spike genes related to the main SARS-CoV2 VARIANTS currently circulating within the world population. The 10 main results proposed to be reproduced by peers are: SARS-CoV2 genome and spike evolution in one year 2020-2021. SARS-CoV2 Origins. Comparing 11 reference variants spikes. Analysing 32 CAL.20C California variant patients’ spikes. Toward a meta mRNA Fibonacci gene end message code. Analysing S501 UK, S484 South Africa and « 2 mutations » INDIA variants. Suggesting a possible variants spike mRNA palindrome symmetry metastructure improving mRNA stability then infectiousness. Analysing Fibonacci Metastructures in the mRNA coding for the vaccines PFIZER and MODERNA. Does the CG-rich modification of the synonymous codons of the spikes of the 2 mRNA vaccines affect the expression and quantity of SARS-CoV2 antibodies? The exceptional case of the Brazilian variant P.1. Particularly, we suggest the following conjecture at mRNA folding level: CONJECTURE of SARS-CoV2 VARIANTS: The growth of long Fibonacci structures in the shape of "podiums" for almost all of the variants studied (UK, California, South Africa, India, etc.) suggests the probable folding of the Spike mRNA in the form of a "hairpin", which can strengthen the cohesion and the lifespan of this mRNA. Finally, we show that these kinds of Fibonacci matastructures disapear TOTALLY by analysing the published mRNA sequences of PFIZER and MODERNA vaccines. One fact is certain, the two mRNAs of the Moderna and Pfizer vaccines will result in a low functionality of the spike vaccine. This is because their designers by seeking greater stability, have doped to build CG rich sequences   which, as soon as they are inserted into the human host, will, paradoxically, seek to mutate, like SARS-CoV2 variants, towards CG ==> UA forms in order to improve their STABILITY and LIFETIME. We conclude using new biomathematics theoretical methods (Master code and numerical standing waves), and comparing the Spikes of the two vaccines Moderna and Pfizer, that there will be very probable differences in stability and shelf life of the two respective mRNAs vaccines. However, “State of the Art” analyzes will disclose that their two protein sequences are strictly identical. By modified their synonymous codons using different strategies, no one can guarantee that the quantity of antibodies generated will be identical in the two cases. We wish to draw attention to the great ADAPTATION power - at the global scale of their genomes - of the most infectious VARIANTS, such as the BRAZIL 20J / 501Y.V3 variant (P.1). This is very worrying for the VACCINES <==> VARIANTS run: We demonstrate how the Brazilian variant P.1 which becomes uncontrollable in Brazil in April 2021 has a level of organization of long metastructures of 17,711 bases covering the genome which is 3.6 more important than that of the 2 reference genomes SARS-CoV2  and worldwide D614G. We suggest that this high level of overall structure of this variant contributes to the stability of this genome and, might explain its greater contagiousness. To complete this article, an ADDENDUM by Nobelprizewinner Luc Montagnier vas added at the end of this paper.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Reference31 articles.

1. (Castro-Chavez, 2020), F. Castro-Chavez, (June 2020), Anticovidian v.2: COVID-19: Hypothesis of the Lab Origin versus a Zoonotic Event Which Can Also be of a Lab Origin, GJSFR, August 2020, https://zenodo.org/record/3988139#.YGMMaq8zaM8

2. (Dae Eun Jeong et al, 2021), Dae Eun Jeong et al, Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273, GitHub, March 2021, https://github.com/NAalytics/Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273

3. (Da Silva Filipe, 2020), da Silva Filipe, A., Shepherd, J.G., Williams, T. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat Microbiol 6, 112–122 (2021). https://doi.org/10.1038/s41564-020-00838-z

4. (Demongeot§Henrion-Caude, 2020), Demongeot J. § Henrion-Caude A., Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life, Biology 2020, 9(5), 88; https://doi.org/10.3390/biology9050088

5. (Govindarajan, 2020a) Ethirajan Govindarajan et al, “Pairwise Spatial Correlation of SARS-Corona Viruses”, London Journal of Research in Computer Science and Technology, London Journals Press, Volume 20, Issue 1, Compilation 1.0, 2020, pp 11-78

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3