Using pH dependence to understand mechanisms in electrochemical CO reduction

Author:

Kastlunger Georg1ORCID,Wang Lei23,Govindarajan Nitish1,Heenen Hendrik H.14,Ringe Stefan5,Jaramillo Thomas2,Hahn Christopher67,Chan Karen1

Affiliation:

1. Technical University of Denmark

2. Stanford University

3. National University of Singapore

4. Fritz Haber Institute of the Max Planck Society

5. Daegu Gyeongbuk Institute of Science and Technology

6. SLAC National Accelerator Laboratory

7. Lawrence Livermore National Laboratory

Abstract

Electrochemical conversion of CO(2) into hydrocarbons and oxygenates is envisioned as a promising path towards closing the carbon cycle in modern technology. To this day, however, the reaction mechanisms towards the plethora of products are disputed, complicating the search for novel catalyst materials. In order to conclusively identify the rate-limiting steps in CO reduction on Cu, we analyzed the mechanisms on the basis of constant potential DFT kinetics and experiments at a wide range of pH values (3 - 13). We find that *CO dimerization is energetically favoured as the rate limiting step towards multi-carbon products. This finding is consistent with our experiments, where the reaction rate is nearly unchanged on an SHE potential scale, even under acidic conditions. For methane, both theory and experiments indicate a change in the rate-limiting step with electrolyte pH from the first protonation step in acidic/neutral conditions to a later one in alkaline conditions. We also show, through a detailed analysis of the microkinetics, that a surface combination of *CO and *H is inconsistent with the measured current densities and Tafel slopes. Finally, we discuss the implications of our understanding for future mechanistic studies and catalyst design.

Funder

Villum Fonden

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theories for Electrolyte Effects in CO2 Electroreduction;Accounts of Chemical Research;2022-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3