Vibration Modelling and Control Experiments for a Thin-Walled Cylindrical Rotor with Piezo Patch Actuation and Sensing

Author:

Brand Ziv,Thomas Matthew Owen Col,Fakkaew Wichaphon,Chamroon Chakkapong

Abstract

This paper describes a dynamic model formulation and control experiments concerning the vibration behaviour of a thin-walled cylindrical rotor with internal piezoelectric patch transducers. Model development, validation and controller design procedures were undertaken for an experimental rotordynamic system comprising a tubular steel rotor (length 0.8 m, diameter 0.166 m and wall-thickness 3.06 mm) supported by two radial active magnetic bearings. Analytical solutions for mode shapes and natural frequencies for free vibration were first derived using a shell theory model, and these used to construct a speed-dependent parametric model for the rotor structure, including piezo patch actuators and sensors. The results confirm that the developed shell theory model can accurately capture the rotating frame dynamics and accounts correctly for frequency splitting from Coriolis effects. The model is also shown to be suitable for active controller design and optimization. Model-based H2 feedback control using the rotor-mounted actuators and sensors is shown to achieve vibration suppression of targeted flexural modes, both with and without rotation.

Publisher

Faculty of Engineering, Chulalongkorn University

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3