A Low Power SRAM Cell with High Read Stability

Author:

Sivamangai N.M.,Gunavathi K.

Abstract

In this paper, a 9T static random access memory (SRAM) cell design which consumes less dynamic power and has high read stability is proposed. In conventional six transistor (6T) SRAM cell, read stability is very low due to the voltage division between the access and driver transistors during read operation. Existing 9T SRAM cell design increases the read static noise margin (SNM) by twice as compared to conventional 6T SRAM cell by completely isolating the bit-lines during the read operation. But the write operation is performed in this cell, by charging/discharging of large bit line capacitances causing 22.5% increase in dynamic power consumption. In the proposed technique, the SRAM cell utilizes charging/discharging of a single bit-line (BL) during write operation, resulting in reduction of dynamic power consumption by 45% as compared to a conventional 6T SRAM cell while the read SNM is also maintained at twice the read SNM of the conventional 6T SRAM cell. All simulations of the proposed 9T SRAM cellhas been carried out in 0.13 ¹m CMOS technology.

Publisher

ECTI

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Non-Volatile SRAM with Reduced Read Delay;2023 International Conference on Next Generation Electronics (NEleX);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3