Particle Swarm Optimization Trained Feedforward Neural Network for Under-Voltage Load Shedding

Author:

Sundarajoo Sharman,Soomro Dur

Abstract

This paper suggests an under-voltage load shedding (UVLS) approach to avoid voltage collapse in stressed distribution systems. Prior to a blackout, a failing system reaches an emergency state, and UVLS is executed as the final option to prevent voltage collapse. Hence, this article introduces an optimal UVLS method using a feedforward artificial neural network (ANN) model trained with the particle swarm optimization (PSO) algorithm to obtain the optimal load shedding amount for a distribution system. PSO is used to obtain the best topology and optimum initial weights of the ANN model to enhance the precision of the ANN model. Thus, the dispute between the optimum fitting regression of the allocation of ANN nodes and computational time was disclosed, while the MSE of the ANN model was minimized. Moreover, the proposed method uses the stability index (SI) to identify the weak buses in the system following an emergency state. Different overload scenarios are examined on the IEEE 33-bus distribution network to validate the efficacy of the suggested UVLS scheme. A comparative study is performed to further assess the performance of the proposed technique. The comparison indicates that the recommended method is effective in terms of voltage stability and remaining load.

Publisher

ECTI

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANN Based Solar Panel Tracking with DC-DC Converter;2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS);2024-03-14

2. Lightning and Surge Arrester Simulation in Power Distribution System;2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3