A Hierarchical Multiscale Framework for History Matching and Optimal Well Placement for a HPHT Fractured Gas Reservoir, Tarim Basin, China

Author:

Chen Hongquan1,Yang Changdong1,Datta-Gupta Akhil1,Zhang Jianye2,Chen Liqun2,Liu Lei2,Chen Baoxin2,Cui Xiaofei3,Shi Fashun3,Bahar Asnul4

Affiliation:

1. Texas A&M University

2. Institution of Exploration and Development of Tarim Oilfield Company-Petro China

3. Optimization Petroleum Technology, Inc.

4. Kelkar and Associates, Inc.

Abstract

Abstract History matching of million-cell reservoir models still remains an outstanding challenge for the industry. This paper presents a hierarchical multi-scale approach to history matching high resolution dual porosity reservoir models using a combination of evolutionary algorithm and streamline method. The efficacy of the approach is demonstrated through application to a high pressure high temperature (HPHT) fractured gas reservoir in the Tarim basin, China with wells located at an average depth of 7500 meters. Our proposed multi-scale history matching approach consists of two-stages: global and local. For the global stage, we calibrate coarse-scale static and dynamic parameters using an evolutionary algorithm. The global calibration uses coarse-scale simulations and applies regional multipliers to match RFT data, well bottom hole pressures, and field average pressure. For the local stage, we calibrate fracture permeability using streamline based sensitivities to further match well bottom-hole pressures. The streamlines are derived from the fracture cell fluxes and the sensitivities are analytically computed for highly compressible flow. The sensitivities are validated by comparison with the pertubation method. The proposed hierarchical multiscale history matching workflow is applied to a faulted and highly fractured deep gas reservoir in the Tarim basin, China. The excessive well cost arising from the large well depth (7500 meters) and high pressure (18000 psi) necessitates optimal field development with limited number of wells. The fracture properties of dual porosity model are upscaled from a highly dense discrete fracture network model generated based on well data and seismic attributes. The history matching includes RFT data, static pressure data and flowing bottom-hole pressure data in producing wells. Field average pressure and RFT (static pressure) data were well matched during the global stage using coarse scale models while flowing bottom-hole pressure is further matched during the local stage calibration using fine scale models. Streamline method has been applied previously mainly to incompressible or slightly compressible flow. However in this application, the results show that the modified streamline-based sensitivity can also significantly reduce data misfit for highly compressible flow. The history matched models are used to visualize well drainage volumes using streamlines. The well drainage volumes in conjunction with static reservoir properties are used to define a ‘depletion capacity map’ which is then used for optimal infill well placement. The novelty of our approach lies in the application of streamlines derived from dual porosity finite-difference simulation to facilitate history matching and well placement optimization in a tight gas reservoir. The newly developed streamline-based analytical sensitivities are suitable for highly compressible flow. To our knowledge, this is the first time streamlines have been used to facilitate history matching and optimal well placement for gas reservoirs.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3