Production Optimization Through Intelligent Multilateral Wells in Heavy Oil Fields via Electrical Heating

Author:

Temizel Cenk1,Canbaz Celal Hakan2,Hosgor Fatma Bahar3,Moreno Raul4,Putra Dike5

Affiliation:

1. Saudi Aramco

2. Ege University

3. Petroleum Software ltd.

4. Smart Recovery

5. Rafflesia Energy

Abstract

Electrical resistance heating provides key advantages over other thermal recovery methods in the recovery of heavy oil resources. These advantages include low upfront capital expenses, more control on the delivery of the heat spatially, easiness of permitting in environmentally sensitive areas as well as environmental and economic benefits due to lower carbon footprint. However, the recovery efficiency is relatively lower compared to more conventional methods such as CSS, steamflood and SAGD processes as it doesn't introduce a (pressure) drive mechanism and radius of impact is relatively small which may result in marginal economics.1 In this study, the application of electrical resistance heating on multilateral wells are studied in order to illustrate the enhanced physical and economic benefits of the method with the multilaterals.2 A comprehensive review of the technology with all the technical and economic details on the deployment of the electrical resistance heater is provided. A full-physics commercial reservoir simulator is utilized to model a benchmark model and it is coupled with a robust optimization and uncertainty tool to investigate the significance of the control and uncertainty variables in the system. Propagation of the heat, increased the radius of impact, production performance, energy input and economics are outlined in comparison to the base case where the horizontal well is modeled without the extra laterals. Production engineering and deployment aspects are all provided in detail, as well. Utilization of electrical resistance heaters on multilateral wells provides improved economics due to the increased recovery with the additional accessible reservoir volume for heating with the reduced cost of the additional laterals as opposed to the major cost of the main wellbore. The improved unit cost for the heater per foot also helps the economics, thus increased the radius of impact translates into better recovery at lower unit costs. Model inputs as well as the results including the production performances, significance of key parameters and economics, are outlined in a comparative manner. Electrical resistance heating is not a new process but has recently gained more attention due to the advances in the materials used providing better durability, however, the recovery process needs special designs that bring down the unit cost to make the projects feasible. This study provides a new approach in improving recovery in electrical resistance heating methods that may help to turn several potential marginal projects into projects with more favorable economics in a method which has a great potential in an industry becoming more environmentally sensitive.

Publisher

IPTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3