Author:
Imavathy S,Chinnadurai M.
Abstract
Now a days the pattern recognition is the major challenge in the field of data mining. The researchers focus on using data mining for wide variety of applications like market basket analysis, advertisement, and medical field etc., Here the transcriptional database is used for all the conventional algorithms, which is based on daily usage of object and/or performance of patients. Here the proposed research work uses sequential pattern mining approach using classification technique of Threshold based Support Vector Machine learning (T-SVM) algorithm. The pattern mining is to give the variable according to the user’s interest by statistical model. Here this proposed research work is used to analysis the gene sequence datasets. Further, the T-SVM technique is used to classify the dataset based on sequential pattern mining approach. Especially, the threshold-based model is used for predicting the upcoming state of interest by sequential patterns. Because this makes deeper understanding about sequential input data and classify the result by providing threshold values. Therefore, the proposed method is efficient than the conventional method by getting the value of achievable classification accuracy, precision, False Positive rate, True Positive rate and it also reduces operating time. This proposed model is performed in MATLAB in the adaptation of 2018a.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献