Personalized Recommendation Model: An Online Comment Sentiment Based Analysis

Author:

Chen Songmin,Lv Xiyan,Gou Juanqiong

Abstract

Traditional recommendation algorithms measure users’ online ratings of goods and services but ignore the information contained in written reviews, resulting in lowered personalized recommendation accuracy. Users’ reviews express opinions and reflect implicit preferences and emotions towards the features of products or services. This paper proposes a model for the fine-grained analysis of emotions expressed in users’ online written reviews, using film reviews on the Chinese social networking site Douban.com as an example. The model extracts feature-sentiment word pairs in user reviews according to four syntactic dependencies, examines film features, and scores the sentiment values of film features according to user preferences. User group personalized recommendations are realized through user clustering and user similarity calculation. Experiments show that the extraction of user feature-sentiment word pairs based on four syntactic dependencies can better identify the implicit preferences of users, apply them to recommendations and thereby increase recommendation accuracy.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minority shareholder activism and its ex-ante monitoring role in corporate M&A decisions: Evidence from China;Pacific-Basin Finance Journal;2024-02

2. Emotional Behavior Analysis of Music Course Evaluation Based on Online Comment Mining;International Journal of Information Technology and Web Engineering;2024-01-17

3. Network Resilience: Definitions, approaches, and applications;Journal of King Saud University - Computer and Information Sciences;2024-01

4. How to discover consumer attention to design topics of fast fashion: a topic modeling approach;Journal of Fashion Marketing and Management: An International Journal;2023-09-05

5. Toward topic diversity in recommender systems: integrating topic modeling with a hashing algorithm;Aslib Journal of Information Management;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3