Improved RBF Network Intrusion Detection Model Based on Edge Computing with Multi-algorithm Fusion

Author:

Liu Xuejun,Li Kaili,Wang Wenhui,Yan Yong,Sha Yun,Chen Jianping,Qin Jiaojiao

Abstract

Edge computing is difficult to deploy a complete and reliable security strategy due to its distributed computing architecture and inherent heterogeneity of equipment and limited resources. When malicious attacks occur, the loss will be immeasurable. RBF neural network has strong nonlinear representation ability and fast learning convergence speed, which is suitable for intrusion detection of edge detection industrial control network. In this paper, an improved RBF network intrusion detection model based on multi-algorithm fusion is proposed. kernel principal component analysis (KPCA) is used to extract data dimension and simplify data representation. Then subtractive clustering algorithm(SCM) and grey wolf algorithm(GWO) are used to jointly optimize RBF neural network parameters to avoid falling into local optimum, reduce the calculation of model training and improve the detection accuracy. The algorithm can better adapt to the edge computing platform with weak computing ability and bearing capacity, and realize real-time data analysis.The experimental results of BATADAL data set and Gas data set show that the accuracy of the algorithm is over 99% and the training time of larger samples is shortened by 50 times for BATADAL data set. The results show that the improved RBF network is effective in improving the convergence speed and accuracy in intrusion detection.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fusion of Digital Twin and Blockchain for Secure and Efficient IoV Networks;HUM-CENT COMPUT INFO;2024

2. An Effective Intrusion Detection System for Edge Computing Using ConvNeXt and ResNet152V2;International Journal of Computational Intelligence and Applications;2024-04-25

3. A Brief Review of the Performance of Energy-Based Models in Embedded Devices;2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE);2023-12-30

4. An ensemble approach-based intrusion detection system utilizing ISHO-HBA and SE-ResNet152;International Journal of Information Security;2023-11-21

5. Smart Approach for Botnet Detection Based on Network Traffic Analysis;Journal of Electrical and Computer Engineering;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3