Abstract
In this proposed work, the moving object is localized using curvelet transform, soft thresholding and frame differencing. The feature extraction techniques are applied on to the localized object and the texture, color and shape information of objects are considered. To extract the shape information, Speeded Up Robust Features (SURF) is used. To extract the texture features, the Enhanced Local Vector Pattern (ELVP) and to extract color features, Histogram of Gradient (HOG) are used and then reduced feature set obtained using genetic algorithm are fused to form a single feature vector and given into the Extreme Learning Machine (ELM) to classify the objects. The performance of the proposed work is compared with Naive Bayes, Support Vector Machine, Feed Forward Neural Network and Probabilistic Neural Network and inferred that the proposed method performs better.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献