Semantic Graph Based Convolutional Neural Network for Spam e-mail Classification in Cybercrime Applications
-
Published:2023-02-09
Issue:1
Volume:18
Page:
-
ISSN:1841-9844
-
Container-title:INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
-
language:
-
Short-container-title:INT J COMPUT COMMUN, Int. J. Comput. Commun. Control
Author:
Muthurajkumar S.,Rahmath Nisha S.
Abstract
Spam is characterized as unnecessary and garbage E-mails. Due to the increasing of unsolicited E-mails, it is becoming more and more crucial for mail users to utilize a trustworthy spam E-mail filter. The shortcomings of spam classifier are defined by their increasing inability to manage large amounts of relevant messages and to effectively detect and effectively detect spam messages. Numerous characteristics in spam classifications are problematic. Given that selecting features is one of the most often used and successful techniques for feature reduction, it is a crucial duty in the identification of keyword content. As a result, features that are unnecessary and pointless yet potentially harm effciency would be removed. In this study, we present SGNNCNN (Semantic Graph Neural Network With CNN) as a solution to tackle the diffcult task of mail identification. By projections E-mails onto a graph and by using the SGNN-CNN model for classifications, this technique transforms the E-mail classification issue into a graph classification challenge. There is no need to integrate the word into a representation since the E-mail characteristics are produced from the semantic network. On several open databases, the technique's effectiveness is evaluated. Some few public databases were used in experiments to demonstrate the high accuracy of the proposed approach for classifying E-mails. In term of spam classification, the performance is superior to state-of-the-art deep learning-based methods.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tweets to Predict: LSTM Model for Crime Analysis Using Twitter Time Series Data;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18
2. Enhanced Structural Image Classification using Hybrid CNN-GNN Model;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18