Author:
Suto Jozsef,Oniga Stefan,Pop Sitar Petrica
Abstract
Human activity recognition (HAR) is one of those research areas whose importance and popularity have notably increased in recent years. HAR can be seen as a general machine learning problem which requires feature extraction and feature selection. In previous articles different features were extracted from time, frequency and wavelet domains for HAR but it is not clear that, how to determine the best feature combination which maximizes the performance of a machine learning algorithm. The aim of this paper is to present the most relevant feature extraction methods in HAR and to compare them with widely-used filter and wrapper feature selection algorithms. This work is an extended version of [1]a where we tested the efficiency of filter and wrapper feature selection algorithms in combination with artificial neural networks. In this paper the efficiency of selected features has been investigated on more machine learning algorithms (feed-forward artificial neural network, k-nearest neighbor and decision tree) where an independent database was the data source. The result demonstrates that machine learning in combination with feature selection can overcome other classification approaches.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献