Robust Adaptive Self-Organizing Wavelet Fuzzy CMAC Tracking Control for De-icing Robot Manipulator

Author:

Ngo ThanhQuyen,Phuong TaVan

Abstract

In this paper, a robust adaptive self-organizing control system based on a novel wavelet fuzzy cerebellar model articulation controller (WFCMAC) is developed for an n-link robot manipulator to achieve the high-precision position tracking. This proposed controller consists of two parts: one is the WFCMAC approach which is implemented to cope with nonlinearities, due to the novel WFCMAC not only incorporates the wavelet decomposition property with fuzzy CMAC fast learning ability but also it will be self-organized; that is, the layers of WFCMAC will grow or prune systematically. Therefore, dimension of WFCMAC can be simplified. The second is the order which is the adaptive robust controller which is designed to achieve robust tracking performance of the system. The adaptive tuning laws of WFCMAC parameters and error estimation of adaptive robust controller are derived through the Lyapunov function so that the stability of the system can be guaranteed. Finally, the simulation and experimental results of novel three-link deicing robot manipulator are applied to verify the effectiveness of the proposed control methodology.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on fuzzy control for mechatronics applications;International Journal of Systems Science;2023-12-27

2. ROBUST ADAPTIVE FAULT-TOLERANT CONTROL BASED ON GBF-CMAC NEURAL NETWORK FOR LOW-ALTITUDE UAV, 267-276.;International Journal of Robotics and Automation;2023

3. An Innovative Approach for Water Distribution Systems;Intelligent Automation & Soft Computing;2022

4. Stability for feedback loops containing complex algorithms;Soft Computing;2020-03-21

5. A Redundant Recurrent Cerebellar Model Articulation Control System for Industrial Applications;Engineering, Technology & Applied Science Research;2019-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3