Novel Machine learning approach for Self-Aware prediction based on the Contextual reasoning

Author:

Daranda AndriusORCID,Dzemyda GintautasORCID

Abstract

Machine learning is compelling in solving various applied problems. Nevertheless, machine learning methods lack the contextual reasoning capabilities and cannot be fitted to utilize additional information about circumstances, environments, backgrounds, etc. Such information provides essential knowledge about possible reasons for particular actions. This knowledge could not be processed directly by either machine learning methods. This paper presents the context-aware machine learning approach for actor behavior contextual reasoning analysis and context-based prediction for threat assessment. Moreover, the proposed approach uses context-aware prediction to tackle the interaction between actors. An idea of the technique lies in the cooperative use of two classification methods when one way predicts an actor’s behavior. The second method discloses such predicted action (behavior) that is non-typical or unusual. Such integration of two-method allows the actor to make the self-awareness threat assessment based on relations between different actors where some multidimensional numerical data define the connections. This approach predicts the possible further situation and makes its threat assessment without any waiting for future actions. The suggested approach is based on the Decision Tree and Support Vector Method algorithm. Due to the complexity of context, marine traffic data was chosen to demonstrate the proposed approach capability. This technique could deal with the end-to-end approach for safe vessel navigation in maritime traffic with considerable ship congestion.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining Column Numbers in Résumés with Clustering;IFIP Advances in Information and Communication Technology;2022

2. Cloud Computing Cloud Computing in Remote Sensing : High Performance Remote Sensing Data Processing in a Big data Environment;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3