Author:
Lee Sang-Hun,Jin Hyun-Wook,Kim Kanghee,Lee Sangil
Abstract
In designing a distributed hard real-time system, it is important to reduce the end-to-end delay of each real-time message in order to ensure quick responses to external inputs and a high degree of synchronization among cooperating actuators. In order to provide a real-time guarantee for each message, the related literature has focused on the analysis of end-to-end delays based on worst-case task phasing. However, such analyses are too pessimistic because they do not assume a global clock. With the assumption that task phases can be managed by using a global clock provided by emerging real-time fieldbuses, such as EtherCAT, we can try to calculate the optimal task phasing that yields the minimal worst-case end-to-end delay. In this study, we propose a heuristic to manage the phase offsets in the distributed tasks to reduce the theoretical end-to-end delay bound. The proposed heuristic reduces the search time for a solution by identifying time intervals where actual communication occurs among inter-dependent tasks. Furthermore, to analyze the distribution of endto- end delays in different phases, we implemented a simulation tool. The simulation results showed that the proposed heuristic can reduce worst-case end-to-end delay as well as jitter in end-to-end delays.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献